Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 16.874
Filtrar
2.
Sci Data ; 11(1): 368, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605058

RESUMO

Globally, there is a concerning decline in many insect populations, and this trend likely extends to all arthropods, potentially impacting unique island biota. Native non-endemic and endemic species on islands are under threat due to habitat destruction, with the introduction of exotic, and potentially invasive, species, further contributing to this decline. While long-term studies of plants and vertebrate fauna are available, long-term arthropod datasets are limited, hindering comparisons with better-studied taxa. The Biodiversity of Arthropods of the Laurisilva of the Azores (BALA) project has allowed gathering comprehensive data since 1997 in the Azorean Islands (Portugal), using standardised sampling methods across islands. The dataset includes arthropod counts from epigean (pitfall traps) and canopy-dwelling (beating samples) communities, enriched with species information, biogeographic origins, and IUCN categories. Metadata associated with the sample protocol and events, like sample identifier, archive number, sampled tree species, and trap type are also recorded. The database is available in multiple formats, including Darwin Core, which facilitates the ecological analysis of pressing environmental concerns, such as arthropod population declines and biological invasions.


Assuntos
Artrópodes , Florestas , Animais , Biodiversidade , Ecossistema , Espécies Introduzidas , Açores
3.
Sci Rep ; 14(1): 8594, 2024 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-38615154

RESUMO

Mixed forests play a fundamental ecological role increasing biodiversity and providing ecosystem services; it has been suggested they have higher resilience and resistance against disturbances, particularly fire. Here, we compare tree mortality in post-fire mixed and pure stands in Spain, on 2,782 plots and 30,239 trees during the period 1986 to 2007. We show evidence that mixed stands can have higher post-fire mortality than pure stands, and specific mixtures of species with different fire-related strategies increase the stand's vulnerability to fire damage versus pure stands of either species, such is the case of Pinus halepensis-Pinus nigra mixtures. Mixtures of two species often had higher mortality than species growing in pure stands. Combinations of species with different fire-related strategies can both enhance or reduce forest resistance. The role and management of mixed forests should be reconsidered after these findings, in order to enhance forest resilience to fires.


Assuntos
Ecossistema , Pinus , Florestas , Árvores , Biodiversidade
4.
Glob Chang Biol ; 30(4): e17282, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38619685

RESUMO

Given the current environmental crisis, biodiversity protection is one of the most urgent socio-environmental priorities. However, the effectiveness of protected areas (PAs), the primary strategy for safeguarding ecosystems, is challenged by global climate change (GCC), with evidence showing that species are shifting their distributions into new areas, causing novel species assemblages. Therefore, there is a need to evaluate PAs' present and future effectiveness for biodiversity under the GCC. Here, we analyzed changes in the spatiotemporal patterns of taxonomic and phylogenetic diversity (PD) of plants associated with the Neotropical seasonally dry forest (NSDF) under GCC scenarios. We modeled the climatic niche of over 1000 plant species in five representative families (in terms of abundance, dominance, and endemism) of the NSDF. We predicted their potential distributions in the present and future years (2040, 2060, and 2080) based on an intermediate scenario of shared socio-economic pathways (SSP 3.70), allowing species to disperse to new sites or constrained to the current distribution. Then, we tested if the current PAs network represents the taxonomic and phylogenetic diversities. Our results suggest that GCC could promote novel species assemblages with local responses (communities' modifications) across the biome. In general, models predicted losses in the taxonomic and phylogenetic diversities of all the five plant families analyzed across the distribution of the NSDF. However, in the northern floristic groups (i.e., Antilles and Mesoamerica) of the NSDF, taxonomic and PD will be stable in GCC projections. In contrast, across the NSDF in South America, some cores will lose diversity while others will gain diversity under GCC scenarios. PAs in some NSDF regions appeared insufficient to protect the NSDF diversity. Thus, there is an urgent need to assess how the PA system could be better reconfigured to warrant the protection of the NSDF.


Dada la actual crisis ambiental, la protección de la biodiversidad se presenta como una de las prioridades socio ambientales más urgentes. Sin embargo, la efectividad de las áreas protegidas (AP), la estrategia principal para salvaguardar los ecosistemas, se ve desafiada por el cambio climático global (CCG), con evidencia que muestra que las especies están desplazando sus distribuciones hacia nuevas áreas, provocando conjuntos de especies novedosos. Por lo tanto, es necesario evaluar la efectividad actual y futura de las AP para la biodiversidad bajo el CCG. En este contexto, analizamos cambios en los patrones espacio­temporales de diversidad taxonómica y filogenética de plantas asociadas al bosque estacionalmente seco neotropical (BES) bajo escenarios de CCG. Modelamos el nicho climático de más de 1,000 especies de plantas en cinco familias representativas (en términos de abundancia, dominancia y endemismo) del BES. Pronosticamos sus distribuciones potenciales en los años actuales y futuros (2040, 2060 y 2080) basándonos en un escenario intermedio de trayectorias socioeconómicas compartidas (SSP 3.70), permitiendo que las especies se dispersen a nuevos sitios o estén limitadas a la distribución actual. Luego, evaluamos si la red actual de AP representa las diversidades taxonómicas y filogenéticas. Nuestros resultados sugieren que el CCG podría promover conjuntos de especies novedosos con respuestas locales (modificaciones en las comunidades) en todo el bioma. En general, los modelos pronosticaron pérdidas en las diversidades taxonómicas y filogenéticas de las cinco familias de plantas analizadas en la distribución del BES. Sin embargo, en los grupos florísticos del norte (es decir, Antillas y Mesoamérica) del BSDN, la diversidad taxonómica y filogenética se mantendrá estable en las proyecciones de CCG. En cambio, en toda la región del BES en América del Sur, algunos núcleos perderán diversidad mientras que otros ganarán diversidad bajo escenarios de CCG. Algunas AP en regiones del BES parecen ser insuficientes para proteger la diversidad del bioma. Por lo tanto, es urgente evaluar cómo se podría reconfigurar mejor el sistema de AP para garantizar la protección del BES.


Assuntos
Ecossistema , Florestas , Filogenia , Biodiversidade , Mudança Climática
5.
Huan Jing Ke Xue ; 45(5): 2715-2726, 2024 May 08.
Artigo em Chinês | MEDLINE | ID: mdl-38629535

RESUMO

Riparian zones are typical fragile and sensitive ecological areas. Fluctuations in water level are the main factor affecting the soil environment in these zones, and vegetation restoration is considered an important means of soil conservation there. However, the interactive effects of water level fluctuations and vegetation restoration on the soil microbial community structure in the reservoir riparian zone remain unclear. Therefore, we selected abandoned grassland and artificial forestland at different water level elevations as research objects in the riparian zone of the Three Gorges Reservoir. We used 16S rRNA high-throughput sequencing technology to explore the composition and diversity of soil prokaryotic microbial communities and investigated the main environmental factors driving the soil microbial community structure. The results showed that the α diversity of soil prokaryotes was the highest at the low water level of the riparian zone. The Pielou_e index, Shannon index, and Simpson index at the 163 m elevation were significantly higher than those at the 168 m elevation, and the Chao1 index and Shannon index were significantly higher than those at the 173 m elevation. However, no significant difference was found in the soil microbial community α diversity between abandoned grassland and artificial forestland. At the same time, water level fluctuations and vegetation restoration had significant effects on the community composition of soil prokaryotic microorganisms, and there were significant differences in biomarker categories in different study sites. Notably, the effects of vegetation restoration types on the soil prokaryotic microbial community structure were stronger than that of water level fluctuations. In addition, the results of hierarchical segmentation showed that soil pH was the main driving factor for the change in soil prokaryotic microbial community structure in the Three Gorges Reservoir. These results deepen our understanding of the variations in microbial community structure in the reservoir riparian zone and provide scientific reference for the restoration and reconstruction of the riparian zone ecosystem.


Assuntos
Microbiota , Solo , Solo/química , Ecossistema , Água , RNA Ribossômico 16S , Florestas , Microbiologia do Solo
6.
Huan Jing Ke Xue ; 45(5): 2881-2890, 2024 May 08.
Artigo em Chinês | MEDLINE | ID: mdl-38629550

RESUMO

Soil microbes are key drivers in regulating the phosphorus cycle. Elucidating the microbial mineralization process of soil phosphorus-solubilizing bacteria is of great significance for improving nutrient uptake and yield of crops. This study investigated the mechanism by which citrus cultivation affects the soil microbial acquisition strategy for phosphorus by measuring the abundance of the phoD gene, microbial community diversity and structure, and soil phosphorus fractions in the soils of citrus orchards and adjacent natural forests. The results showed that citrus cultivation could lead to a decrease in soil pH and an accumulation of available phosphorus in the soil, with a content as high as 112 mg·kg-1, which was significantly higher than that of natural forests (3.7 mg·kg-1). Citrus cultivation also affected the soil phosphorus fractions, with citrus soil having higher levels of soluble phosphorus (CaCl2-P), citrate-extractable phosphorus (Citrate-P), and mineral-bound phosphorus (HCl-P). The phosphorus fractions of natural forest soils were significantly lower than those of citrus soils, whereas the phoD gene abundance and alkaline phosphatase activity were significantly higher in natural forest soils than in citrus soils. High-throughput sequencing results showed that the Shannon diversity index of phosphate-solubilizing bacteria in citrus soils was 4.61, which was significantly lower than that of natural forests (5.35). The microbial community structure in natural forests was also different from that of citrus soils. In addition, the microbial community composition of phosphate-solubilizing bacteria in citrus soils was also different from that of natural forests, with the relative abundance of Proteobacteria being lower in natural forest soils than in citrus soils. Therefore, citrus cultivation led to a shift of soil microbial acquisition strategy for phosphorus, with external phosphorus addition being the main strategy in citrus soils, whereas microbial mineralization of organic phosphorus was the main strategy in natural forest soils to meet their growth requirements.


Assuntos
Fósforo , Solo , Solo/química , Microbiologia do Solo , Bactérias/genética , Florestas , Fosfatos , Citratos
7.
Glob Chang Biol ; 30(4): e17258, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38629937

RESUMO

Forests, critical components of global ecosystems, face unprecedented challenges due to climate change. This study investigates the influence of functional diversity-as a component of biodiversity-to enhance long-term biomass of European forests in the context of changing climatic conditions. Using the next-generation flexible trait-based vegetation model, LPJmL-FIT, we explored the impact of functional diversity on long-term forest biomass under three different climate change scenarios (video abstract: https://www.pik-potsdam.de/~billing/video/2023/video_abstract_billing_et_al_LPJmLFIT.mp4). Four model set-ups were tested with varying degrees of functional diversity and best-suited functional traits. Our results show that functional diversity positively influences long-term forest biomass, particularly when climate warming is low (RCP2.6). Under these conditions, high-diversity simulations led to an approximately 18.2% increase in biomass compared to low-diversity experiments. However, as climate change intensity increased, the benefits of functional diversity diminished (RCP8.5). A Bayesian multilevel analysis revealed that both full leaf trait diversity and diversity of plant functional types contributed significantly to biomass enhancement under low warming scenarios in our model simulations. Under strong climate change, the presence of a mixture of different functional groups (e.g. summergreen and evergreen broad-leaved trees) was found more beneficial than the diversity of leaf traits within a functional group (e.g. broad-leaved summergreen trees). Ultimately, this research challenges the notion that planting only the most productive and climate-suited trees guarantees the highest future biomass and carbon sequestration. We underscore the importance of high functional diversity and the potential benefits of fostering a mixture of tree functional types to enhance long-term forest biomass in the face of climate change.


Assuntos
Ecossistema , Florestas , Biomassa , Teorema de Bayes , Folhas de Planta
8.
Glob Chang Biol ; 30(4): e17275, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38624252

RESUMO

Solar radiation is scattered by cloud cover, aerosols and other particles in the atmosphere, all of which are affected by global changes. Furthermore, the diffuse fraction of solar radiation is increased by more frequent forest fires and likewise would be if climate interventions such as stratospheric aerosol injection were adopted. Forest ecosystem studies predict that an increase in diffuse radiation would result in higher productivity, but ecophysiological data are required to identify the processes responsible within the forest canopy. In our study, the response of a boreal forest to direct, diffuse and heterogeneous solar radiation conditions was examined during the daytime in the growing season to determine how carbon uptake is affected by radiation conditions at different scales. A 10-year data set of ecosystem, shoot and forest floor vegetation carbon and water-flux data was examined. Ecosystem-level carbon assimilation was higher under diffuse radiation conditions in comparison with direct radiation conditions at equivalent total photosynthetically active radiation (PAR). This was driven by both an increase in shoot and forest floor vegetation photosynthetic rate. Most notably, ecosystem-scale productivity was strongly related to the absolute amount of diffuse PAR, since it integrates both changes in total PAR and diffuse fraction. This finding provides a gateway to explore the processes by which absolute diffuse PAR enhances productivity, and the long-term persistence of this effect under scenarios of higher global diffuse radiation.


Assuntos
Ecossistema , Taiga , Florestas , Atmosfera , Carbono
9.
Nat Commun ; 15(1): 3158, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605006

RESUMO

Tropical forests cover large areas of equatorial Africa and play a substantial role in the global carbon cycle. However, there has been a lack of biometric measurements to understand the forests' gross and net primary productivity (GPP, NPP) and their allocation. Here we present a detailed field assessment of the carbon budget of multiple forest sites in Africa, by monitoring 14 one-hectare plots along an aridity gradient in Ghana, West Africa. When compared with an equivalent aridity gradient in Amazonia, the studied West African forests generally had higher productivity and lower carbon use efficiency (CUE). The West African aridity gradient consistently shows the highest NPP, CUE, GPP, and autotrophic respiration at a medium-aridity site, Bobiri. Notably, NPP and GPP of the site are the highest yet reported anywhere for intact forests. Widely used data products substantially underestimate productivity when compared to biometric measurements in Amazonia and Africa. Our analysis suggests that the high productivity of the African forests is linked to their large GPP allocation to canopy and semi-deciduous characteristics.


Assuntos
Florestas , Árvores , Ciclo do Carbono , Gana , Carbono , Ecossistema , Clima Tropical
10.
Nat Commun ; 15(1): 3154, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605043

RESUMO

Forest carbon sequestration capacity in China remains uncertain due to underrepresented tree demographic dynamics and overlooked of harvest impacts. In this study, we employ a process-based biogeochemical model to make projections by using national forest inventories, covering approximately 415,000 permanent plots, revealing an expansion in biomass carbon stock by 13.6 ± 1.5 Pg C from 2020 to 2100, with additional sink through augmentation of wood product pool (0.6-2.0 Pg C) and spatiotemporal optimization of forest management (2.3 ± 0.03 Pg C). We find that statistical model might cause large bias in long-term projection due to underrepresentation or neglect of wood harvest and forest demographic changes. Remarkably, disregarding the repercussions of harvesting on forest age can result in a premature shift in the timing of the carbon sink peak by 1-3 decades. Our findings emphasize the pressing necessity for the swift implementation of optimal forest management strategies for carbon sequestration enhancement.


Assuntos
Sequestro de Carbono , Florestas , Árvores , China , Biomassa , Carbono/análise
11.
Glob Chang Biol ; 30(4): e17274, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38605677

RESUMO

Climate change and other anthropogenic disturbances are increasing liana abundance and biomass in many tropical and subtropical forests. While the effects of living lianas on species diversity, ecosystem carbon, and nutrient dynamics are receiving increasing attention, the role of dead lianas in forest ecosystems has been little studied and is poorly understood. Trees and lianas coexist as the major woody components of forests worldwide, but they have very different ecological strategies, with lianas relying on trees for mechanical support. Consequently, trees and lianas have evolved highly divergent stem, leaf, and root traits. Here we show that this trait divergence is likely to persist after death, into the afterlives of these organs, leading to divergent effects on forest biogeochemistry. We introduce a conceptual framework combining horizontal, vertical, and time dimensions for the effects of liana proliferation and liana tissue decomposition on ecosystem carbon and nutrient cycling. We propose a series of empirical studies comparing traits between lianas and trees to answer questions concerning the influence of trait afterlives on the decomposability of liana and tree organs. Such studies will increase our understanding of the contribution of lianas to terrestrial biogeochemical cycling, and help predict the effects of their increasing abundance.


Assuntos
Ecossistema , Clima Tropical , Florestas , Árvores , Carbono
12.
Environ Monit Assess ; 196(5): 444, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38607455

RESUMO

This study aimed to monitor long-term land use dynamics for understanding the natural forest integrity and intactness of the Rajiv Gandhi (Nagarhole) Tiger Reserve (RTR) pre- and post-declarations as TR. We employed multi-source data from Survey of India Toposheets (1:50 k), Landsat-7, and Sentinel-2A along with Global Ecosystem Dynamics Investigation (GEDI) vegetation canopy height (10 m) data, a high-spatial resolution CORONA (1970) images and temporal Google Earth Pro images for mapping and validation. To map vegetation type, land use and land cover (LULC) transitions, and fragmentation (1980-2022) we employed a hybrid classification approach. This study also analyzed decadal forest dynamics within TRs using India's State of Forest Reports (ISFR). Findings reveal significant forest fragmentation and habitat loss due to anthropogenic activities in the TR. Mono-plantations (teak and eucalyptus) were found inside TR, while the buffer (1 km) was occupied mainly with coffee and orange plantations which indicates the prevalence of human footprint. The overall accuracy of the current period (2022) is 92.0% with a kappa coefficient value of 0.90. These plantations were established during the British colonial period (early 1900s) for commercial purposes by clearing natural forests. The present study highlights that mono-plantations have not transitioned into natural forests even after a century. This lack of transformation could potentially compromise the integrity of the native forest. Despite its ecological significance, RTR has experienced disturbance due to human footprint. Hence, there is a need for an action plan to protect this vital landscape by replacing mono-plantations with suitable species to preserve the integrity of the forest. These issues extend beyond the protected areas, impacting surrounding regions and require regular monitoring. The proposed methods can be applied to other protected areas facing similar problems in the country and world.


Assuntos
Ecossistema , Monitoramento Ambiental , Humanos , Florestas , Efeitos Antropogênicos , Café
13.
Proc Natl Acad Sci U S A ; 121(17): e2307216121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38621126

RESUMO

Uncontrolled fires place considerable burdens on forest ecosystems, compromising our ability to meet conservation and restoration goals. A poor understanding of the impacts of fire on ecosystems and their biodiversity exacerbates this challenge, particularly in tropical regions where few studies have applied consistent analytical techniques to examine a broad range of ecological impacts over multiyear time frames. We compiled 16 y of data on ecosystem properties (17 variables) and biodiversity (21 variables) from a tropical peatland in Indonesia to assess fire impacts and infer the potential for recovery. Burned forest experienced altered structural and microclimatic conditions, resulting in a proliferation of nonforest vegetation and erosion of forest ecosystem properties and biodiversity. Compared to unburned forest, habitat structure, tree density, and canopy cover deteriorated by 58 to 98%, while declines in species diversity and abundance were most pronounced for trees, damselflies, and butterflies, particularly for forest specialist species. Tracking ecosystem property and biodiversity datasets over time revealed most to be sensitive to recurrent high-intensity fires within the wider landscape. These megafires immediately compromised water quality and tree reproductive phenology, crashing commercially valuable fish populations within 3 mo and driving a gradual decline in threatened vertebrates over 9 mo. Burned forest remained structurally compromised long after a burn event, but vegetation showed some signs of recovery over a 12-y period. Our findings demonstrate that, if left uncontrolled, fire may be a pervasive threat to the ecological functioning of tropical forests, underscoring the importance of fire prevention and long-term restoration efforts, as exemplified in Indonesia.


Assuntos
Borboletas , Incêndios , Animais , Ecossistema , Solo , Florestas , Árvores , Biodiversidade
14.
Proc Natl Acad Sci U S A ; 121(17): e2307220121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38621138

RESUMO

The expansion of the oil palm industry in Indonesia has improved livelihoods in rural communities, but comes at the cost of biodiversity and ecosystem degradation. Here, we investigated ways to balance ecological and economic outcomes of oil palm cultivation. We compared a wide range of production systems, including smallholder plantations, industrialized company estates, estates with improved agronomic management, and estates with native tree enrichment. Across all management types, we assessed multiple indicators of biodiversity, ecosystem functions, management, and landscape structure to identify factors that facilitate economic-ecological win-wins, using palm yields as measure of economic performance. Although, we found that yields in industrialized estates were, on average, twice as high as those in smallholder plantations, ecological indicators displayed substantial variability across systems, regardless of yield variations, highlighting potential for economic-ecological win-wins. Reducing management intensity (e.g., mechanical weeding instead of herbicide application) did not lower yields but improved ecological outcomes at moderate costs, making it a potential measure for balancing economic and ecological demands. Additionally, maintaining forest cover in the landscape generally enhanced local biodiversity and ecosystem functioning within plantations. Enriching plantations with native trees is also a promising strategy to increase ecological value without reducing productivity. Overall, we recommend closing yield gaps in smallholder cultivation through careful intensification, whereas conventional plantations could reduce management intensity without sacrificing yield. Our study highlights various pathways to reconcile the economics and ecology of palm oil production and identifies management practices for a more sustainable future of oil palm cultivation.


Assuntos
Arecaceae , Óleos Industriais , Ecossistema , Florestas , Biodiversidade , Agricultura , Árvores , Óleo de Palmeira , Conservação dos Recursos Naturais
15.
Bull Math Biol ; 86(5): 51, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38581579

RESUMO

Forest plantations are economically and environmentally relevant, as they play a key role in timber production and carbon capture. It is expected that the future climate change scenario affects forest growth and modify the rotation age for timber production. However, mathematical models on the effect of climate change on the rotation age for timber production remain still limited. We aim to determine the optimal rotation age that maximizes the net economic benefit of timber volume in a negative scenario from the climatic point of view. For this purpose, a bioeconomic optimal control problem was formulated from a system of Ordinary Differential Equations (ODEs) governed by the state variables live biomass volume, intrinsic growth rate, and area affected by fire. Then, four control variables were associated to the system, representing forest management activities, which are felling, thinning, reforestation, and fire prevention. The existence of optimal control solutions was demonstrated, and the solutions of the optimal control problem were also characterized using Pontryagin's Maximum Principle. The solutions of the model were approximated numerically by the Forward-Backward Sweep method. To validate the model, two scenarios were considered: a realistic scenario that represents current forestry activities for the exotic species Pinus radiata D. Don, and a pessimistic scenario, which considers environmental conditions conducive to a higher occurrence of forest fires. The optimal solution that maximizes the net benefit of timber volume consists of a strategy that considers all four control variables simultaneously. For felling and thinning, regardless of the scenario considered, the optimal strategy is to spend on both activities depending on the amount of biomass in the field. Similarly, for reforestation, the optimal strategy is to spend as the forest is harvested. In the case of fire prevention, in the realistic scenario, the optimal strategy consists of reducing the expenses in fire prevention because the incidence of fires is lower, whereas in the pessimistic scenario, the opposite is true. It is concluded that the optimal rotation age that maximizes the net economic benefit of timber volume in P. radiata plantations is 24 and 19 years for the realistic and pessimistic scenarios, respectively. This corroborates that the presence of fires influences the determination of the optimal rotation age, and as a consequence, the net economic benefit.


Assuntos
Incêndios , Florestas , Incêndios/prevenção & controle , Conceitos Matemáticos , Modelos Biológicos
16.
Glob Chang Biol ; 30(4): e17227, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38558300

RESUMO

Methods using genomic information to forecast potential population maladaptation to climate change or new environments are becoming increasingly common, yet the lack of model validation poses serious hurdles toward their incorporation into management and policy. Here, we compare the validation of maladaptation estimates derived from two methods-Gradient Forests (GFoffset) and the risk of non-adaptedness (RONA)-using exome capture pool-seq data from 35 to 39 populations across three conifer taxa: two Douglas-fir varieties and jack pine. We evaluate sensitivity of these algorithms to the source of input loci (markers selected from genotype-environment associations [GEA] or those selected at random). We validate these methods against 2- and 52-year growth and mortality measured in independent transplant experiments. Overall, we find that both methods often better predict transplant performance than climatic or geographic distances. We also find that GFoffset and RONA models are surprisingly not improved using GEA candidates. Even with promising validation results, variation in model projections to future climates makes it difficult to identify the most maladapted populations using either method. Our work advances understanding of the sensitivity and applicability of these approaches, and we discuss recommendations for their future use.


Assuntos
Florestas , Pseudotsuga , Adaptação Fisiológica/genética , Genômica , Mudança Climática
17.
Philos Trans R Soc Lond B Biol Sci ; 379(1902): 20230016, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38583471

RESUMO

Forest diversity is the outcome of multiple species-specific processes and tolerances, from regeneration, growth, competition and mortality of trees. Predicting diversity thus requires a comprehensive understanding of those processes. Regeneration processes have traditionally been overlooked, due to high stochasticity and assumptions that recruitment is not limiting for forests. Thus, we investigated the importance of seed production and seedling survival on forest diversity in the Pacific Northwest (PNW) using a forest gap model (ForClim). Equations for regeneration processes were fit to empirical data and added into the model, followed by simulations where regeneration processes and parameter values varied. Adding regeneration processes into ForClim improved the simulation of species composition, compared to Forest Inventory Analysis data. We also found that seed production was not as important as seedling survival, and the time it took for seedlings to grow into saplings was a critical recruitment parameter for accurately capturing tree species diversity in PNW forest stands. However, our simulations considered historical climate only. Due to the sensitivity of seed production and seedling survival to weather, future climate change may alter seed production or seedling survival and future climate change simulations should include these regeneration processes to predict future forest dynamics in the PNW. This article is part of the theme issue 'Ecological novelty and planetary stewardship: biodiversity dynamics in a transforming biosphere'.


Assuntos
Florestas , Árvores , Biodiversidade , Plântula , Noroeste dos Estados Unidos
18.
Philos Trans R Soc Lond B Biol Sci ; 379(1902): 20230373, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38583477

RESUMO

Projections of spatial biodiversity dynamics under climate warming are often based on models including only climate variables, and when non-climatic factors (e.g. soil) are included, data are often at much coarser spatial resolutions than those experienced by plants. Field studies along elevation gradients permit the gathering of detailed soil data, while still covering a wide climatic gradient. Here, an intensive field survey of four spring forest herbs along an elevation gradient showed that soil properties had substantial impacts on the occurrence/abundance of all species, and that soil effects were more pronounced at higher elevations. For Trillium erectum and Claytonia caroliniana, very infrequent occurrences at high elevation were strongly associated with rare microsites with high pH or nutrients. In a seven-year transplant experiment with T. erectum, we found that individuals grew to much smaller sizes at high than low elevation, suggesting that environmental factors rather than dispersal limitation constrain the species' upper range limit, despite substantial warming in recent decades. Our study demonstrates that soil factors interact strongly with climate to determine plant range limits along climatic gradients. Unsuitable soils for plants at high elevations or latitudes may represent an important constraint on future plant migration and biodiversity change. This article is part of the theme issue 'Ecological novelty and planetary stewardship: biodiversity dynamics in a transforming biosphere'.


Assuntos
Plantas , Solo , Humanos , Solo/química , Florestas , Biodiversidade , Dispersão Vegetal
19.
Ecol Lett ; 27(4): e14409, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38590122

RESUMO

Ecological communities encompass rich diversity across multiple trophic levels. While modern coexistence theory has been widely applied to understand community assembly, its traditional formalism only allows assembly within a single trophic level. Here, using an expanded definition of niche and fitness differences applicable to multitrophic communities, we study how diversity within and across trophic levels affects species coexistence. If each trophic level is analysed separately, both lower- and higher trophic levels are governed by the same coexistence mechanisms. In contrast, if the multitrophic community is analysed as a whole, different trophic levels are governed by different coexistence mechanisms: coexistence at lower trophic levels is predominantly limited by fitness differences, whereas coexistence at higher trophic levels is predominantly limited by niche differences. This dichotomy in coexistence mechanisms is supported by theoretical derivations, simulations of phenomenological and trait-based models, and a case study of a primeval forest ecosystem. Our work provides a general and testable prediction of coexistence mechanism operating in multitrophic communities.


Assuntos
Ecossistema , Florestas
20.
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...